martes, 18 de octubre de 2011

Aplicación de la Hiperbola con respecto a la ley de Boyle-Mariotte

Tenemos que advertir que para la resolución de este ejercicio es necesario tener conocimiento de lo que son las funciones logaritmicas y exponenciales.
Asi que te pedimos que revises la siguiente pagina:
http://www.amolasmates.es/pdf/cidead/4_eso/apuntes/teoria%20func%20racionales%20exponenc%20y%20logarit.pdf


Ejercicio
Según la Ley de Boyle-Mariotte, la presión que ejerce un gas y el volumen que
ocupa son inversamente proporcionales. A 25º determinada cantidad de gas ocupa
un volumen de 2 litros y ejerce una presión de 3 atmósferas.
a) ¿Qué volumen ocupará cuando la presión ejercida sea de 1 atmósfera?.
b) ¿Qué presión ejercerá cuando el volumen sea 3 litros?.
c) Escribe la función presión → volumen y dibuja su gráfica

 Solución:
P·V=cte. en este caso P·V=6
a) P=1 atm. V=6 litros
b) V=3 litros P=2 atm.
c) f(x)=x
            6


Hiperbola

Aplicaciones
La Hipérbola tiene propiedades de reflexión análogas a las de la elipse. Si se dirige un haz de luz en dirección de un foco, por ejemplo de f, se reflejará antes de llegar a él en la hipérbola en dirección del foco f'. Este principio se usa en los telescopios del tipo Cassegrain. El sistema de navegación loran (acrónimo de long range navigation) usa las propiedades de la reflexión de la hipérbola 
 
Propiedad Optica
Consideremos un espejo que tenga forma de hipérbola. Si un rayo de luz que parta de uno de los focos choca contra el espejo, se reflejará alejandose directamente del otro foco.
 
Sistema de navegación LORAN
La propiedad de la definición de la hipérbola: la diferencia de las distancias de los puntos de la hipérbola a los focos es constante, se utiliza en la navegación.En el sistema de navegación LORAN, una estación radioemisora maestra y otra estación radioemisora secundaria emiten señales que pueden ser recibidas por un barco en altamar. Puesto que un barco que monitoree las dos señales estará probablemente más cerca de una de las estaciones, habrá una diferencia entre las distancias recorridas por las dos señales, lo cual se registrará como una pequeña diferencia de tiempo entre las señales, En tanto la diferencia de tiempo permanezca constante, la difeerencia entre las dos distancias será también constante. Si el barco sigue la trayectoria correspondiente a una diferencia fija de tiempo, esta trayectoria será una hipérbola cuyos focos están localizados en las posiciones de las dos estaciones. Si se usan dos pares de transmisores, el barco deberá quedar en la intersección de las dos hipérbolas correspondientes.
 
Trayectorias de cometas.
Un cuerpo celeste que provenga del exterior del sistema solar y sea atraído por el sol, describirá una órbita hiperbólica, teniendo como un foco al sol y saldrá nuevamente del sistema solar. Esto sucede con algunos cometas. 
 
El reloj de sol
Cada día el Sol, desde que sale por el Este y se pone por el Oeste, describe sobre el cielo un arco de circunferencia. Este movimiento es aparente, porque, en realidad, es consecuencia del movimiento diario de rotación de la Tierra.Desde hace mucho tiempo se sabe que, cuando el Sol recorre el cielo a lo largo de un día, la sombra que proyecta un objeto fijo describe una curva cónica. Esto se puede comprobar experimentalmente si se va marcando, por ejemplo, cada media hora, sobre una superficie plana el límite de la sombra que proyecta un objeto cualquiera.Los relojes de sol se fundamente en este hecho. Están provistos de un marcador o estilete, llamado gnomon, que proyecta su sombra sobre una superficie plana donde están señalizadas las horas. El extremo de la sombra indica la hora solar correspondiente.El sol, por lo lejano que está, se considera como un foco puntual de luz. La línea imaginaria que le une con el extremo del gnomon recorre a lo largo del día parte de la superficie de un cono, también imaginario. La superficie de este cono se corta por el plano del reloj donde se obseva la sombra del extremo del gnomon. Por eso, la trayectoria que sigue esa sombra es la de una cónica.En las latitudes de la Península Ibérica (de 38º a 42º) esa cónica es siempre una hipérbola, tanto más curvada cuanto más próximo esté el día 21 de Junio (solsticio de verano) o al 21 de Diciembre (solsticio de invierno). En dos días del año, la trayectoria de la sombra que proyecta el gnomon es una recta en todos los lugares de la Tierra. Esto ocurre en los días 21 de marzo (equinoccio de primavera) y 23 de septiembre (equinoccio de otoño). La razón es que , en esos días, la trayectoria del Sol y el extremo del gnomon están en un mismo plano que corta al plano de observación en una recta.
 
Marchemos al espacio para observar un asteroide que vaga libremente. Su trayectoria será rectilínea (Ley de Newton) hasta que se vea perturbada por la proximidad de un planeta, por ejemplo, cuya tracción comienza a curvarlo.

En raros casos el asteroide, será “capturado ” por el planeta y caerá hacia él o pasara a moverse siguiendo una orbita elíptica a su alrededor. Pero lo más probable es que describa una trayectoria como la indicada: una rama de hipérbola.
La asíntota de la izquierda marca la trayectoria que tendría el asteroide sin la influencia del campo gravitatorio del planeta. La atracción, mayor a menor distancia, obliga al asteroide a cambiar cada vez más rápidamente de dirección. Cuando el asteroide se aleja del planeta decrece paulatinamente la atracción y el movimiento tiende, de nuevo, a ser rectilíneo: aparece la segunda asíntota.

Las rectas que unen los focos con cualquier punto de una hipérbola forman ángulos iguales con la tangente a la hipérbola en dicho punto. Por tanto, si la superficie de un reflector, es generada por la revolución de una hipérbola alrededor de su eje transverso, todos los rayos de luz provenientes del exterior que converjan sobre un foco, se reflejara pasando por el foco. Esta propiedad se emplea a veces en ciertos telescopios juntos con reflectores parabólicos.

La diferencia de los tiempos en que un sonido se oye en dos puestos de escucha distintos, es proporcional a las distancias que separan a las fuentes sonoras de los puestos de escucha. Se sabe, por lo tanto, que este punto está sobre una hipérbola.
Si se emplea un tercer puesto de escucha para poder determinar otra hipérbola. Si se escucha la fuente sonora esta en la intersección de las dos curvas. Consecuentes el concepto de hipérbola resulta útil en los cálculos de alcances balísticos.

Elipse

¿Cómo se aplica en la vida cotidiana?
La elipse tiene propiedades de reflexión similares a la de la parábola, en este caso cuando colocamos un emisor de ondas en un foco, estas se reflejarán en las paredes de la elipse y convergerán en el otro foco. Con respecto a la elipse la aplicación primera que tenemos que mencionar es que las órbitas de los planetas son elipticas con el Sol en uno de los focos.

En la medicina se usa un aparato llamado litotriptor para desintegrar "cálculos" renales por medio de ondas intra-acuáticas de choque. El funcionamietno de este aparato es de la siguiente forma, se coloca un medio elipsoide lleno de agua pegado al cuerpo del paciente en el foco de esta parte del elipsoide se pone un generador de ondas; el foco de la otra parte del elipsoide se debe localizar en estos "cálculos" y así al reflejarse las ondas en la superficie de la elipsoide de afuera del paciente todas convergeran en el "cálculo" y este se desintegrará. Además existen capillas o galerías de los secretos. Son estructuras con techos elipsoidales aquí se puede oir a una persona que está en un foco desde el otro foco y las personas que están entre las otras dos no oirá nada.
  
Las órbitas de planetas como la Tierra son elípticas donde un foco corresponde al Sol. También le corresponde esta figura a los cometas y satélites. Además se cree que este razonamiento se aplica también a las órbitas de los átomos. 

Debido a la resistencia del viento, las trayectorias que realizan los aviones cuando hacen viajes circulares se vuelven elípticas. 

En arquitectura se utilizan con mayor frecuencia arcos con forma elíptica.

Parabola

Aplicaciones

Las aplicaciones de las parabolas son basicamente aquellos fenomenos en donde nos interesa hacer conveger o diverger un haz de luz y sonido principalmente. Por ejemplo las antenas parabolicas, las lamparas sordas, los faros de los autos. Se pueden construir, por la misma propiedad de las parabolas, hornos solares. Los microfonos de ambiente en algunos deportes tambien tienen forma paraboloidal.

Las parábolas tienen una propiedad  Si se coloca una bombilla encendida en el foco de la parábola, algunos haces de luz serán reflejados por la parábola y todos estos rayos serán perpendiculares a la directriz. Esta propiedad es usada en las lámparas sordas o en los faros de los automóviles estos están formados por un paraboloide (parábola en 3 dimensiones) de espejos y una bombilla en el foco de este paraboloide. En algunas lámparas se puede mover la bombilla del foco y los haces de luz divergeran o convergerán. Este principio funciona también en las antenas parabólicas. Un satélite envía información a la Tierra, estos rayos serán perpendiculares a la directriz por la distancia a la que se encuentra el satélite. Al reflejarse en el plato de la antena (blanca, casi siempre) los rayos convergen en el foco en donde se encuentra un receptor que decodifica la información. También en los telescopios se usa esta propiedad. 

En el siglo XVI Galileo demostró que la trayectoria de un proyectil que se dispara al aire formando un ángulo con la horizontal es una parábola. Desde entonces, las formas parabólicas se han usado para diseñar fanales de automoviles, telescopios reflectores y puentes colgantes.

Resolucion de problemas


Circunferencia

¿Para qué sirve la ecucaión de la circunferencia?
Generalmente esta ecuacion sirve para conocer la posicion de una particula en un determinado lugar en un sistema de referencia, en este caso la ecuacion de la circunferencia te da la posicion (x,y) de una particula a una distacia de radio r.
En la fisica en si no utilizas directamente la ecuacion de la circunferencia, porque raras veces necesitas conocer la posicion de una particula, mas bien buscas valores como el numero de vueltas que da, o la velocidad con la que gira un objeto asi msimo las fuerzas que en ella se producen, pero se lo puede utilizar particularmente para conocer su posicion en funcion de una variable por ejemplo el tiempo.
Asi se pueden analizar cosas mas sencillas, por ejemplo al construir un redondel de una calle o avenida, un puente curvo (aunque no necesariamente debe ser toda la circunferencia), para que se simplifique, piensa en todos los objetos con la forma de una circunferia y piensa como se los pudo haber hecho tan perfectos, es verdad algunos se los hace mediante maquinas industriales, pero como hicieron esta maquina, pues alguien tuvo que utilizar la ecuacion cumplir los requerimientos y construirla.
¿Cómo se resuelve un problema con la circunferencia?

lunes, 17 de octubre de 2011

Cónicas

¿Qué son las cónicas?
Se llama cónica a la curva obtenida al cortar una superficie cónica por un plano.
Circunferencia
Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro . El radio de la circunferencia es la distancia de un punto cualquiera de dicha circunferencia al centro .

Parabola
La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz .

Elipse
La elipse es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante . Estos dos puntos fijos se llaman focos de la elipse .

Hiperbola

Es el lugar geométrico de los puntos del plano cuya diferencia de distancias entre dos puntos fijos es constante . Estos dos puntos fijos se llaman focos de la hipérbola .
Las cónicas frente a nuestros ojos.